Right Angled Triangles and Pythagoras Property

IMPORTANT

Right Angled Triangles and Pythagoras Property: Overview

This topic covers concepts, such as, Right Angled Triangles, Hypotenuse of Right Angle Triangles, Right Isosceles Triangles & Basic Properties of Right Isosceles Triangles etc.

Important Questions on Right Angled Triangles and Pythagoras Property

EASY
IMPORTANT

The the side of an isosceles right triangle whose hypotenuses is 10 cm is k2,value of k is _____

EASY
IMPORTANT

The hypotenuses of an isosceles right triangle whose side is 5 cm

EASY
IMPORTANT

For a triangle ABCABC=90°BAC=BCA=45°. Find the relation between AB and BC

EASY
IMPORTANT

A triangle with three angles 90°,45° and 45° is known as right _____ triangle

EASY
IMPORTANT

The triangle ABC with ABC=90° and AB=BC is a _____ triangle.

EASY
IMPORTANT

Find the other angles of the triangle with ABC=90° and AB=BC

EASY
IMPORTANT

State True or False

The hypotenuses of an isosceles right triangle whose side is 6 cm is 12 cm.

EASY
IMPORTANT

An isosceles right triangle has angles of 45°,45° and 90°.

EASY
IMPORTANT

In DEF, if E=90°. If D+F is k°, find the value of k.

MEDIUM
IMPORTANT

A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.

MEDIUM
IMPORTANT

ABC is a right angled triangle. ABC=900, AC=25cm and AB=24 cm. Calculate the area of ABC.

MEDIUM
IMPORTANT

AD is drawn perpendicular to BC, the base of an equilateral triangle ABC. Given BC=10 cm, find the length of AD, correct to 1place of decimal.

EASY
IMPORTANT

All the angles of the right angled triangle are equal to 90°.

HARD
IMPORTANT

P is a point in the interior of a rectangle ABCD. If P is joined to each of the vertices of the rectangle and the lengths PA, PB and PC are  3 cm, 4 cm and 5 cm respectively, find the length of PD.

HARD
IMPORTANT

In Fig. 10.34,B is acute angle and  ADBC.Show that,

b2=a2+c2-2ax

Question Image

MEDIUM
IMPORTANT

In Fig. 10.34,B is acute angle and  ADBC.Show that,

b2=h2+a2+x2-2ax

Question Image

MEDIUM
IMPORTANT

In ABC, B=900 and D is the mid point of BC. Prove that BC2=4(AD2-AB2)

MEDIUM
IMPORTANT

In ABC, B=900 and D is the mid-point of BC. Prove that  AC2=AD2+ 3 CD2

HARD
IMPORTANT

In ABC, A = 900. D is the mid point of AC. Prove that BC2-BD2=3 AD2.

HARD
IMPORTANT

In a right ABC, right angled at C, P and Q are points on the sides CA and CB respectively dividing those sides in the ratio 2 : 1 .

Prove that 9 AQ2+PB2 = 13 AB2.